原帖由 key 于 8-5-2009 01:12 发表
SVM我本身也学得不太好,我尝试说一下,但估计不对的可能性大一些,哈哈。
SVM是一个建立在N维空间的超平面学习器。首先把输入数据当做一个N维空间的两组向量,分别有正和负两类。
在这个N维空间中建立一个超 ...
对于上面一大堆的代数运算,我们可以用简单的例子来解析一下,用我自己的话来说,就是把这些数学问题庸俗一下,哈哈
给数据集:D = { ({1}, 1), ({-1}, -1) },也就是x1 = {1}, c1 = 1, x2 = {-1}, c2 = -1。想都不用想,就知道这个一维“超平面”为:W = {1}, b = 0
给数据集:D = { ({1, 0}, +1), ({0, 1}, +1), ({-1, 0}, -1), ({0, -1}, -1) }, 在平面直角坐标系中画一下这四个点,很容易就得到一个“超平面”:W={1, 1}, b = 0
而svm要解决的问题是N很大,而数据集中还存在一些误判数据,这些才是svm算法的精华。。。希望上面的东西对你的入门有一定的帮助吧。 |